NTAG SmartSensor

NHS31xx SW overview

A 4 SECURE CONNECTIONS
4\ FOR A SMARTER WORLD

PUBLIC

Contents
* IC family

* Demo/Evaluation HW

* Development environment
* Architecture

* Documentation

* Release

* Quality

PUBLIC

2

h

P X

IC family

Smart Sensor
- Low cost
- Ultra-low power

- Programmable
-NFC enabled

Compute core
-62.5kHz — 8 MHz
- 32k Flash
-8k Ram

- 4k EEPROM NHS31xx

Built-in sensors
* Voltage — ADC/DAC
* Current—-12D
* Temperature

Sensors
(specific
combination)

A 4
PUBLIC | 3 Mk

Demo/Evaluation HW

Typical setup

PUBLIC | 4

Development environment

- Adapted for NHS31xx (plugin)

* Eclipse based

- GNU C compiler, linker, libraries
- GDB debugger

* Integration with LPC-Link2

* Freely available

SDK is not compatible with
the MCUXpresso IDE v10.3.0 and later

PRESSO
P

5.
HS31xx

PUBLIC | 5

h

P X

Architecture An example

Application Blinky s

L E D tgg gﬁ:arity

Chip GPIO driver Ertw

PUBLIC | 6

Architecture — Chip layer

* Single entry point to the drivers
* Describes the specific IC model
* Publishes chip level info

chip.h

* PUBLIC oscillators
/ PUBLIC memories

* Factory data addresses

o

\ 1 driver per HW block:

direct mapping with HW

PUBLIC | 7

Architecture — Chip layer in LPCXpresso

.\ Develop - lib_chip_nssfinc/chip.h - LPCXpresso
File Edit 5Scource Refactor Mavigate Search Project Bun W

Erﬁ' ! |§3'G%'smih

[(5 Projec... ©2 | &, Periph... I} Regist.. & Symb... = m

25 ~
A

> b
‘ /§ (=% lib_chip_nss
) > B Archives
* 1 LPCXpresso project » &) Includes

4 2 inc
wadcdac_nss.

- [n| assert.h
> [h| bussync_nss.h
- [k c2d_nss.h
- [h] chip.h
> 2 mods

2 src
adcdac_nss.c

- €] bussync_nss.c

* 1.cand 1 .hfile perdriver

* 2 flavors: Debug and Release

build into .a libraries

» |g] c2d_nss.c

JI[E; DEEug|
||:| liblib_chip nss.al
Jl[E; F'.Eleasel &

[liblib_chip_nss.a|
B ':ir? rods =

4 | 1 b

PUBLIC | 8

Architecture — Board layer

board.h

\4

Chip

Module Module
startup led

\4

Single entry point to the HW
Describes the specific board
Abstracts application from HW

A board always contains a chip and
the startup SW module

A board provides an AP| per HW
feature (e.g. LED)

PUBLIC | 9

% Develop - lib_board_dp/mods/startup/startup.h - LPCXpresso
d: Edit Scurce Refactor Mavigate Search Project Run

Architecture — Board layer in LPCXPress

il
il

G- _|®v%v;mﬂ§\ﬁ:

[y Projec.. 82 %, Periph.. M3 Regist.. & Symb.. =
¥

kl

* 1 LPCXpresso project per board

1 .cand 1 .hfile

|5 lib_board_dp||

» by, Archives

» [aill Includes

4 & inc

> BB mods

4 [src

« 2 flavors: Debug and Release

build into .a libraries

i liblib_board_dp.a

4 IE, Release |

| 7 liblib_board_dp.a

PUBLIC | 10

[]

Architecture — Application layer

Application
code

Board

Chip

Module
startup

Module led

ER
\

Implements the application flow
Accesses HW in an abstracted way

An application runs on a board
Modules can be re-used across

applications (“mods” folder)

PUBLIC | 11

Architecture — Application layer in LPCXpr

w@:ps— §;bonard_dpfrrmdsfstartup.a’startup.h - LPCXpresso
File Edit 5Source Refactor Mavigate Search Project Run W

o .|@'ﬁ-';nﬁ-§\&=

[Projec... 5% |2, Periph.. i Regist.. & Symb.. = O

_ BEE <
=% app_demo_dp_blinky -
/ 4 g:f Binaries

> f‘g‘« app_demo_dp_blinky.axf - [arm/le]
> [ai Includes
2 inc
» 23 mods
4 [src
s g erp.c
,L@ mainblinly.c
» = Debug
I readme.tsd

* Builds into an executable (.axf)

* Atleast 1 file (main.c)

* Links with chip and board libraries

m

* 1 LPCXpresso project per application

BREEE

=2 app_sxample_dp_ndeftt T

=% app_example_dp_ssp | -

4 | 11} | 3

PUBLIC | 12

[]
|

Architecture — Code example

Includes both the board
and the chip APls

4

l.g| mainblinky.c &3
1 #include "board.h"

it main(void) The board library knows
t . agw .
En rein(el how to initialize our board

/¥ Always initialize the HW */
Board Init();

h 4

The board has LEDs, so it

while{ 1) { “ry g . .
-E0_Toggle (12D 0); o0) » will link in its library, the
Chip Clock System BusylWait ms(2%8); ——
y P o Systen Susatt LED mod
return 8;
} The chip knows how long

h 4

an instruction takes

PUBLIC | 13

Architecture — Code reusability

* The “mods” project is just a container of reusable modules
(does not build)

* One folder in the “mods” project contains one module

* Modules can be reused in every chip, board or application
project (a reference to the module is created in the “mods”
folder of the respective project)

* The code of the module is compiled by the project they are
referenced in

(5 Pr.. 22 |Ey Pen. HifRe. &S = O

4 |l=% app_example_dp_ndeft2t
+ [Includes
B2 inc
4 2 mods
- 7y i2cio
- oy ndeft2t
© [y trace
- |h| app_sel.h
. 22 sre
- [script
|=| readme.td
a (5 lib_board_dp
- [Includes
2 inc
4 2 mods
- 2Ry led
© [y startup
- |h| board_sel.h
. 22 sre
=) lib_chip_nss
a =5 mods
+ [Includes
- [= cmeas
» = i2cio
» = led
+ == msg
+ = ndeft2t
: = rtccomp
. [= startup
- [tmeas
o = trace

PUBLIC | 14

- [®) ~

Architecture — Diversity

* Reusable modules support diversity
* Diversity settings for module “xxx” are described in “xxx_dft.h”

* The project that reuses the module is responsible for defining the required settings (in [chip]
board|app]_sel.h)

* E.qg.: for module ‘led’, the number of LEDs, the physical pins and the polarity differ per board

a |5 lib_board_dp 418 J**

- il Includes 42 * The number of LEDs supported by the Demo PCB.
JIE' 43 * Matches the length of #LED PROPERTIES.
s inc .
4 (B mods 45 #define LED COUNT 1
N led 456
: oy startup 47,
= 48 * The LED properties for the supported LEDs of the Demo PCB.
. |h| board_sel.h ; B . . ; .
8 = 49 * Declared global, so they can be assigned to macro LED_PROPERTIES in board_sel.h and picked up by the mod LED
. 5rC se */
51 #define LED_PROPERTIES {/* LED1 LED RED */ {@, 7, true, IOCON_PIO@_7}}

PUBLIC | 15 4\

Documentation of NHS31xx firmware

146
147 [] f*=%
1428 * [@brief Sets -the -Syater -Clock -frequency -in Hz
128 * -@param frequency : ‘The Syater Clock freguency in Hz to - set
150 * @note This setting -affects the core execution -speed.
131 * Only -a -3et -of -frequencies -is -supported. -If -not -valid,
13z * the - "frequency"” will be clipped to the closest supported value
153 * higher -than or -equal to-it.
154 * The -Syster Clock -frequency range -is - (62.5 -kHz - -BMHz).
153 * Frequencies of -0 -and higher -than -8MHz -are -NOT -allowed.
. 15 * Use the #Chip Clock System GetClockFreq to read to exact
PY 157 * frequency -that -was -set.
Every API is documented
155 | woid Chip Clock System SetClockFreq(int frequency):
. 160
[
Embedded in source code
- D tyl — |
Oxygen S y e void Chip_Clock_System_SetClockFreq (int fregquency)
)

OUtp Ut |n HTM L Sets the System Clock frequency in Hz.

Parameters

frequency : The System Clock frequency in Hz to set

MNote
This setting affects the core execution speed. Only a set of frequencies is
supported. If not valid, the ‘frequency’ will be clipped to the closest
supported value higher than or equal to it. The System Clock frequency
range is (62.5 kHz - 8MHz). Frequencies of 0 and higher than 8MHz are
NOT allowed. Use the Chip_Clock_System_GetClockFreq to read to
exact frequency that was set.

Definition at line 81 of file clock_nss.c.

Release — Naming

Chip
revision

release Imra2

Release
version

|

11

2

Chip
model

|

nhs3100

A dedicated release per chip model (NHS3100, NHS3152)

Valid only for a single revision of the chip

File tree structure is kept between versions to allow easy upgrade

PUBLIC

17

SDK contents

SDK

Release notes

|| LPCXpresso

Datasheet nss android ios plugin
HW User Gang
Manual Installers Installers programming
Current
Firmware API — — Source code = Source code — consumption
estimator
Application || Download
notes links

| Demo
applications

Example
applications

PUBLIC | 18

X

SECURE CONNECTIONS
FOR A SMARTER WORLD

	Slide 1
	Contents
	IC family
	Demo/Evaluation HW
	Development environment
	Architecture
	Architecture – Chip layer
	Architecture – Chip layer in LPCXpresso
	Architecture – Board layer
	Architecture – Board layer in LPCXPresso
	Architecture – Application layer
	Architecture – Application layer in LPCXpresso
	Architecture – Code example
	Architecture – Code reusability
	Architecture – Diversity
	Documentation of NHS31xx firmware
	Release – Naming
	SDK contents
	Slide 19

